Main Article Content

Abstract

The Bandung City Hub Branch expedition service company is currently facing a decrease in the number of shipments and weight of goods sent for the Jakarta - Bandung shipping route, which automatically affects the income received. This decline phenomenon can undoubtedly impact the company's financial condition and profitability. This study aims to create and simulate tariff scenarios with a system dynamics model. The scenarios created are adjusted to existing conditions and scenarios based on consumer demand. The results of the existing scenario obtained an average amount of income in the ten iterations of the existing model output of Rp 293,789,065.095 with an average profit of Rp 77,397,734.026. In the scenario based on consumer demand, the average amount of income in the ten iterations of the first scenario model output was Rp 277,636,482.287, with an average profit of Rp 61,245,151.218. These results show that the existing model conditions are still better at providing income, so the company can still use them. This model allows companies to understand the interactions of various elements of the company's business because it models cause-and-effect relationships, and companies can analyze factors such as cash flow, costs, and revenues that influence each other and help companies make long-term decisions.

Keywords

Expedition Service Income Simulation tariff Profit System Dynamics

Article Details

How to Cite
Dewi, N. K., Adriant, I., Cristian, F., & Prasetyo, W. A. (2025). Shipping Income Tariff Model Using System Dynamics Method. Ilomata International Journal of Management, 6(3), 1142-1155. https://doi.org/10.61194/ijjm.v6i3.1566

References

  1. Alfariz, M. R., Dewi, N. K., & Pakpahan, H. M. (n.d.). Number Of Passengers In 2023. 1(9).
  2. An, S., Hu, X., Wang, J., & Lv, H. (2021). A System Dynamics Model For Urban Taxi Price Simulation. 36(5), 395–405.
  3. Andruetto, C., Stenemo, E., & Pernestål, A. (2024). Transportation Research Interdisciplinary Perspectives Towards sustainable urban logistics : Exploring the implementation of city hubs through system dynamics. Transportation Research Interdisciplinary Perspectives, 27(July), 101204. https://doi.org/10.1016/j.trip.2024.101204
  4. Arffien, Afferdhy, Iman Sudirman, A. T. J. (2024). Ilomata International Journal of Tax & Accounting. 5(1), 28–43.
  5. Aulawi, H., Kurniawati, R., & Pratama, V. V. (n.d.). Analisa Keputusan Pemilihan Jasa Ekspedisi dengan Metode AHP dan Borda. 1, 23–29.
  6. Bala, B. K., Arshad, F. M., & Noh, K. M. (n.d.). System Dynamics.
  7. Cahyadi, H., Purnamasari, E., Sipil, T., Teknik, F., Islam, U., Muhammad, K., & Al, A. (n.d.). Analisis Tarif Ideal Teoritis Angkutan Barang Banjarmasin - Tanjung.
  8. Daellenbach, H. G., & Mcnickle, D. C. (n.d.). Management Science : Decision Making Through Systems Thinking.
  9. Dewi, N. K., Arffien, A., Nurhayana, H. F., Saefudin, A., Management, T., & Java, W. (2024). Jurnal Sosial Ekonomi dan Kebijakan Pertanian. 8(November), 756–770.
  10. Dewi, N. K., Dindasari, E., Transportasi, S. M., Tinggi, S., & Logistik, M. (2022). Analisis Tarif Ideal Untuk Layanan Jasa Trucking Studi Kasus : Pt . X Pada Rute Tanjung Priok – Jabodetabek. 8(April), 13–25.
  11. Dewi, N. K., Pradono, P., Miharja, M., & Yudoko, G. (2017). A model of manau rattan distribution cost in sumatra. International Journal of Supply Chain Management, 6(3), 226–231.
  12. Dewi, N., Miharja, M., & Yudoko, G. (2015). Analisis Kebijakan Distribusi Bahan Baku Rotan Dengan Pendekatan Dinamik Sistem Studi Kasus Rotan Indonesia. Jurnal Perencanaan Wilayah Dan Kota, 26(3), 177–191. https://doi.org/10.5614/jpwk.2015.26.3.3
  13. Ding, S., Ward, H., Cucurachi, S., & Tukker, A. (2023). Revealing the hidden potentials of Internet of Things (IoT) - An integrated approach using agent-based modelling and system dynamics to assess sustainable supply chain performance. Journal of Cleaner Production, 421(August), 138558. https://doi.org/10.1016/j.jclepro.2023.138558
  14. Dwi, S., Putri, A., Zubair, A., Studi, P., Informasi, S., Informasi, F. T., & Malang, U. M. (2023). Analisis prediktif perubahan nilai profit berdasarkan klasifikasi pengguna pada usaha jasa logistik Predictive analysis of profit value changes based on user classification in logistics. 1(1), 1–10. https://doi.org/10.26905/jisad.v1i1.9865
  15. Elyasi, A., & Teimoury, E. (2023). Applying Critical Systems Practice meta-methodology to improve sustainability in the rice supply chain of Iran. Sustainable Production and Consumption, 35(November 2022), 453–468. https://doi.org/10.1016/j.spc.2022.11.024
  16. Ervil, R., & Rahman, F. (2020). Analisis Pemilihan Supplier Dengan Menggunakan Metode Analytical Hierarchy Process ( Studi Kasus Pt.Gunung Naga Mas ). Jurnal Sains Dan Teknologi: Jurnal Keilmuan Dan Aplikasi Teknologi Industri, 19(2), 79. https://doi.org/10.36275/stsp.v19i2.195
  17. Fuhao, Z., & Qiuhong, Z. (2023). Comparison of the response efficiency between the fractal and traditional emergency organizations based on system dynamic simulation. Sustainable Operations and Computers, 4(December 2022), 29–38. https://doi.org/10.1016/j.susoc.2022.12.001
  18. Gao, N., Qu, L. C., & Jiang, Y. T. (2022). A System Dynamic Model of Closed-Loop Supply Chain considering Recovery Strengthening and Product Differentiation. Mathematical Problems in Engineering, 2022. https://doi.org/10.1155/2022/3778597
  19. Ghadge, A., Er, M., Ivanov, D., & Chaudhuri, A. (2022). Visualisation of ripple effect in supply chains under long-term, simultaneous disruptions: a system dynamics approach. International Journal of Production Research, 60(20), 6173–6186. https://doi.org/10.1080/00207543.2021.1987547
  20. Guo, T., Liu, P., Wang, C., Xie, J., Du, J., & Lim, M. K. (2023). Toward sustainable port-hinterland transportation: A holistic approach to design modal shift policy mixes. Transportation Research Part A: Policy and Practice, 174(April), 103746. https://doi.org/10.1016/j.tra.2023.103746
  21. He, Z., & Xiong, Z. (2023). Research on Pattern Matching of Dynamic Sustainable Procurement Decision-Making for Agricultural Machinery Equipment Parts. IEEE Access, 11(December 2022), 1–17. https://doi.org/10.1109/ACCESS.2022.3232124
  22. Kar, A., & Datta, P. R. (2024). Logistics Cost Dynamics in International Business : A Logistics Cost Dynamics in International Business : A Causal Approach. November 2020. https://doi.org/10.1177/0015732520947861
  23. Kazantsev, N., Petrovskyi, O., & Müller, J. M. (2023). From supply chains towards manufacturing ecosystems: A system dynamics model. Technological Forecasting and Social Change, 197(October), 122917. https://doi.org/10.1016/j.techfore.2023.122917
  24. Khakifirooz, M., Fathi, M., & Du, L. (2024). Transportation Research Interdisciplinary Perspectives Reliability Assessment of Vehicle-to-Vehicle Communication Networks through Headway Distribution and Information Propagation Delay. Transportation Research Interdisciplinary Perspectives, 24(September 2023), 101053. https://doi.org/10.1016/j.trip.2024.101053
  25. Laimon, M., Mai, T., Goh, S., & Yusaf, T. (2020). applied sciences Energy Sector Development : System Dynamics Analysis. 1–19.
  26. Liu, Z., Niu, Y., Guo, C., & Jia, S. (2023). A Vehicle Routing Optimization Model for Community Group Buying Considering Carbon Emissions and Total Distribution Costs. Energies, 16(2). https://doi.org/10.3390/en16020931
  27. Mulyati, E., & Alif, I. (2014). Perencanaan Tarif Ideal Pengiriman Barang Berdasarkan Metode Perhitungan Biaya Operasional Kendaraan ( Bok ). 54, 213–222.
  28. Nurlaela Kumala Dewi, Pradono, Miming Miharja, G. Y. (2018). Phenomena Of Rattan Distribution In Indonesia.Pdf.
  29. Pada, B., Yapindo, P. T., & Auliyah, D. (2019). Evaluasi Penentuan Tarif Pengiriman. 6(2), 159–167.
  30. Putri, A. R., Nuha, M. U., Dilicahyani, I. A., Dhany, R., Pratiwi, R., Wahid, U., Semarang, H., Tengah, J., Mental, M., Sistem, B., & Profesional, K. (n.d.). Peranan Mental Model Dan System Thinking Pada. 1–10.
  31. Rahmasari, L., Farisyi, S., Nabila, P. A., Ricardianto, P., Wahyuni, T. I. E., Trisanto, F., Moejiono, M., Rahman, A., Hasibuan, M. T., & Endri, E. (2024). Customer relationship management and brand image: Empirical evidence from marine export company in Indonesia. Uncertain Supply Chain Management, 12(1), 19–28. https://doi.org/10.5267/j.uscm.2023.10.021
  32. Rauf, H., & Umer, M. (2024). Transportation Research Interdisciplinary Perspectives A system dynamic road transport modal mix emission analysis and prediction. Transportation Research Interdisciplinary Perspectives, 24(July 2023), 101083. https://doi.org/10.1016/j.trip.2024.101083
  33. Scotia, N., Lopez, M., Adams, M., & Walker, T. R. (2024). Transportation Research Interdisciplinary Perspectives Cost-benefits analysis of noise abatement measures in the port of Halifax ,. Transportation Research Interdisciplinary Perspectives, 24(January), 101057. https://doi.org/10.1016/j.trip.2024.101057
  34. Widowati, I., Pratiwi, K. I., Studi, P., Industri, M., Tinggi, S., Wastukancana, T., & Barat, J. (2023). Journal of Management and Industrial Engineering ( JMIE ) Sekolah Tinggi Teknologi Nusantara Lampung Analisa Kualitas Pelayanan Jasa Pengiriman Barang Dengan Metode Servqual Di Pt Sicepat Journal of Management and Industrial Engineering ( JMIE ) Sekolah Tinggi Teknologi Nusantara Lampung. 2, 104–117.
  35. Yu, Z., Chou, S. Y., Phuc, P. N. K., & Hui-Kuang Yu, T. (2022). System dynamics forecasting on taiwan power supply chain. Computer Systems Science and Engineering, 41(3), 1191–1205. https://doi.org/10.32604/csse.2022.021239