
Satria Mulia Chaerudin¹, Afriapol Syafarudin²
¹²Mercu Buana University Jakarta-Indonesia
Correspondent: satria.mulia@ymail.com

Submitted : January 4, 2021 Revised : January 18, 2021 Published : January 31, 2021

ABSTRACT
This study aims to provide empirical evidence regarding the influence of product quality, service quality, and price on the decision to purchase medical device products and their implications for consumer satisfaction. This study uses the PLS (Partial Least Square) analysis method. This study uses primary data in the form of a questionnaire and is distributed to 141 (one hundred and forty-one) respondents who are users of medical device products, namely apheresis machines. Based on the overall exposure of statistical calculations on structural model analysis and testing that partially, product quality is proven to have a positive and significant effect on purchasing decisions for medical device products, service quality is proven to have a positive and significant effect on purchasing decisions for medical device products, prices are proven to have a positive and significant effect. Significant towards the decision-making of medical device product purchasing, product quality proved to have a positive and significant effect on consumer satisfaction of owned medical device products, service quality proved to have a positive and significant effect on consumer satisfaction of medical device products, price proved to have a positive and significant effect on consumer satisfaction of medical device products health. The purchase decision is proven to have a positive and significant effect on consumer satisfaction with medical device products.

Keywords: Product Quality, Service Quality, Price, Purchase Decision, Customer Satisfaction

INTRODUCTION
The Industrial Revolution 4.0 also brought changes in the health sector. Technology is increasingly playing an important role for doctors and health practitioners, for the realization of better health quality for patients, which is a multinational company engaged in medical device products. The medical device products offered are apheresis products, which are automatic blood processing products used by PMI (Indonesian Red Cross) and Hospitals. Apheresis products are medical device products that are used to process blood components, especially for platelet components. This medical device product was introduced in Indonesia in 2014. This product comes from the United States. Currently, 3 companies sell different brands for this apheresis machine. Companies with other brands are from the United States and Germany.

This apheresis product is a durable machine product, where for its routine use, it will use sustainable consumables that are a closed or closed system. Apheresis medical device products have several advantages that have added value to the product, including the high quality of the product because it has a fast time to process the blood. Optimal service quality by preparing qualified application staff and technicians in the operational process of the apheresis machine. It is hoped that the added value possessed by this apheresis medical device product, namely product quality, service quality, and price can influence the selection of apheresis health products in...
Chaerudin, & Syafarudin

Indonesia and also increase consumer satisfaction.

Table 1.
Apheresis product sales data for 2015-2019

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of consumables/year (pcs)</th>
<th>Apheresis Single Disposable Product (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>1,211</td>
<td>2,088,907,363</td>
</tr>
<tr>
<td>2016</td>
<td>1,423</td>
<td>2,148,730,000</td>
</tr>
<tr>
<td>2017</td>
<td>1,572</td>
<td>2,373,720,000</td>
</tr>
<tr>
<td>2018</td>
<td>2,022</td>
<td>3,053,220,000</td>
</tr>
<tr>
<td>2019</td>
<td>1,728</td>
<td>2,609,280,000</td>
</tr>
</tbody>
</table>

Source: Data processed by Researchers in 2020

From the sales data above, it can be seen that there is a decrease in sales in 2019. After analyzing consumers of this apheresis medical device product used in the 2015-2019 timeframe, some consumers are satisfied with the quality of the product and the quality of service provided, but some are not satisfied. The dissatisfaction that was conveyed regarding the quality of the product was that there were too many alarms that appeared when this apheresis product was used which led to the failure of the process. Meanwhile, the dissatisfaction that was conveyed related to the quality of service was the limited number of technicians and application personnel in Indonesia, so that the service process at PMI and the hospital were hampered when the apheresis product had problems. As for the price, consumers expressed their objection because the price offered for this apheresis health product is slightly more expensive than other apheresis medical device products. And based on the results of a presurvey conducted via telephone to 35 respondents, there were problems encountered in some consumers (Hertati, 2015: Syafarudin & Heratati, 2020: Safkaur. & Hertati, 2020: Lestari & Heratati, 2020): (1) The product quality, too many alarms arise when this apheresis product is used which leads to failure of the process; (2) Quality of service, limited technicians, and application personnel in Indonesia, so that the service process at PMI and hospitals is hampered when the apheresis product occurs problems; and (3) Price, consumers express their objection because the price offered for this apheresis medical product is slightly more expensive than other apheresis medical device products.

Based on the data that has been collected by researchers, the purpose of this study is to see how strong the influence of product quality, service quality, and price can influence consumers in making medical device product purchasing decisions and the implications for consumer satisfaction.

Kotler (2012) product quality is one of the main positioning tools for marketers. Quality is closely related to customer value and satisfaction. According to Kotler and Armstrong (2012), product quality is a characteristic of a product related to its ability to meet stated customer needs or implied meanings. Kotler (2012) has revealed that there are eight dimensions of product quality as follows (Syafarudin & Mulya 2019: Hertati 2018): (1) performance or product performance is the main characteristic or function of a product. This is the main benefit or benefit of the products we buy; (2) reliability or product reliability, which is the chance that a product will correct itself from failure while performing its functions; (3) product features or features feature is a characteristic or additional features that complement the basic benefits of a product; (4) durability or durability shows the age of the product, which is the number of uses of a product before it is replaced or damaged. The longer the durability, the more durable it will be. Durable products will be perceived as having higher quality than products that run out quickly or
quickly replace them; (5) Dimensions of conformance or suitability Conformance is the conformity of product performance with the stated standards of a product. This is the kind of promise that a product must fulfill. A product that has the quality of this dimension means that it conforms to the product's standard; (6) serviceability or repairability Under the meaning, here the quality of the product is determined based on repairability: easy, fast, and competent. Products that can be repaired are of a higher quality than products that are not or difficult to repair; and (7) aesthetic or the beauty of the product appearance Aesthetic or beauty concerns the appearance of a product that makes consumers like it.

This is often done in the form of product design or packaging. Some brands update their faces to make them more beautiful in the eyes of consumers. 8. perceived quality perceived quality. This concerns consumer assessment of the image, brand, or advertisement. Products with well-known brands are usually perceived to be of higher quality than unheard brands. That is why products always try to build their brands so that they have high brand equity.

Kotler and Keller (2012) state that service quality is the totality of the features and characteristics of a product or service that bears on its ability to satisfy stated or implied needs. So it can be concluded that service quality is the level of the company's ability to provide services under consumer expectations. To measure the quality of service, five key elements deserve attention, based on Tjiptono (2015) The five key elements are as follows (Hertati., Safkaur, Simanjuntak, 2019: Syaparudin & Hertati. 2020):

1. **Reliability.** Reliability is the ability to perform the promised services reliably and accurately. Examples, in this case, include the ability of employees to provide the best service, the ability of employees to handle customer needs quickly and correctly, the company's ability to provide good service under consumer expectations.

2. **Assurance.** namely the knowledge and politeness of employees and their ability to show trust and confidence. In the form of employees' ability to generate confidence and trust in promises that have been made to consumers. Examples, in this case, include the knowledge and skills of employees in carrying out their duties, employees can be relied on, employees can give confidence to consumers, employees have good technical expertise.

3. **Tangible** (form). the appearance of physical facilities, equipment, personal, and communication materials.

4. **Empathy.** the condition of paying attention and giving personal attention to customers. For example, employees should try to position themselves as customers. If a customer complaints, an immediate solution must be sought, to maintain a harmonious relationship, by showing a genuine sense of care.

5. **Responsiveness.** Willingness to help customers and provide services on time. The willingness of employees and employers to help customers and provide services quickly as well as hear and resolve consumer complaints.

Kotler and Keller (2012) state that price is the amount of money exchanged for a product or service. Furthermore, price is the amount of value that a customer can exchange for several benefits by owning or using a good or service. Kotler and Armstrong (2012) explain that four measures look at the price, namely price affordability, price compatibility with product quality, price compatibility with benefits, and priced according to price capability or competitiveness. The four price measures are as follows (Syafarudin Saluy, Masyhudzulhak. 2020: Hertati & Safkaur, 2020: Safkaur. & Hertati, 2020: Hertati & Safkaur, 2019).

1. Affordability of customer prices can reach prices set by the company. Products usually
have several types in one brand, the price is also different from the cheapest to the most expensive. With the price set, many customers buy the product.

2. Match price with product quality. Price is often used as an indicator of quality for customers, people often choose a higher price between two goods because they see a difference in quality. When the price is higher, people tend to think that the quality is better.

3. The suitability of price with customer benefits decides to buy a product if the benefits felt are greater or equal to what has been spent to get it. If the customer feels the benefits of the product are less than the money spent, the customer will think that the product is expensive and the customer will think twice about making repeat purchases.

4. Prices according to the ability or price competitiveness of customers often compare the price of a product with other products, in this case, the cost of a product is considered by the customer when buying the product.

Buying decision Kotler and Armstrong (2012), "Consumer buyer behavior refers to the buying behavior of final consumers - individuals and households that buy goods and services for personal consumption", this definition can be interpreted that the buying decision behavior refers to the buying behavior. Kotler and Keller (2012) that the dimensions of purchasing decisions are product choice, brand choice, dealer choice, purchase time, and payment method. And the dimensions of the purchase decision used in this study are only from 3 aspects, namely (Hertati. Fery, Safkaur, .2020. Hertati, et, al, 2020: Hertati. & Sumantri 2016): (1) Brand Decisions; (2) Time decisions; and (3) Payment Method Decision.

Kotler (2012) customer satisfaction is a feeling of pleasure or disappointment for someone who appears after comparing their perceptions or impressions of service being below expectations, customers are not satisfied. But if the service exceeds expectations, the customer is very satisfied and happy and buys back. This satisfaction will certainly be felt after the customer has consumed the product. Irawan (2012) states that customers are satisfied if their expectations are met or under what the customer wants are exceeded. There are 5 main dimensions of customer satisfaction, among others (Hertati & Safkaur, 2020: Hertati, Syafarudin, Safkaur.O. Fery.I. 2020: Syafarudin, 2016):

1. Price For sensitive customers, usually low prices are an important source of satisfaction because they will get high value for money. This price component is relatively insignificant for those who are not priced sensitive.

2. Service Quality depends on three things, namely systems, technology, and people. Customer satisfaction with service quality is usually difficult to imitate because the formation of attitude and behavior that is in line with the company's wishes is not an easy job. Improvement must be carried out starting from the recruitment process, training, and work culture.

3. Product Quality Customers feel satisfied after buying and using the product if the product quality is good.

4. Emotional Factor (Emotional Factor) Emotional factors are shown by consumers on the satisfaction they get in using a product/service that creates a sense of pride and self-confidence.
5. Efficiency (Ease) Ease of obtaining these products or services and ease of payment can make customers more satisfied if it is relatively easy, comfortable, and efficient to get a product or service.

METHODS

This type of research is a type of quantitative descriptive research. This study used a questionnaire with a numerical scale and an ordinal scale with a Likert scale 1-5. The sample consisted of several members selected from the population as many as 220 (two hundred and twenty) people, wherein in this study, 141 (one hundred and forty-one) users using the apheresis machine were sampled. This research uses the Slovin formula so that the sample range can be taken from the Slovin technique is between 5% of the study population. The data obtained from this study were then processed using data analysis techniques, namely by using partial least square (PLS). Still, according to Ghozali (2014), PLS is an alternative approach that shifts from a covariance-based SEM approach to a variance-based approach. The PLS design is intended to overcome the limitations of the SEM method, namely when the data has problems such as measuring data on a certain scale, a small number of samples, missing values, abnormal data, and the presence of multicollinearity. Besides, PLS can be used on any type of data scale (nominal, ordinal, interval, ratio) as well as more flexible assumption requirements.

There are three path analysis models in PLS, namely the inner model which specifies the relationship between latent variables, the outer model which specifies the relationship between the latent variable and the manifest variable, the weight relation which estimates the value of the latent variable. The inner model is a model that describes the relationship between latent variables based on the substantive theory. The inner model is commonly referred to as the inner relation of a structural model. Meanwhile, the outer model is a model that describes the relationship between latent variables and their indicators. The outer model is commonly referred to as the outer relation or measurement model. In the outer model, there are two models, namely the reflexive indicator model and the formative indicator model.

The reflexive model is often referred to as the principal factor model, which means that the manifest variable is influenced by latent variables. The formative model is the opposite of the reflexive model where the formative model assumes that the manifest variable affects the latent variable. In its use, PLS has several evaluations of existing structural models and measurement models. In evaluating the measurement model, tests for convergent validity, discriminant validity, composite reliability, and average variance extracted were carried out. Meanwhile, in the structural model evaluation, the R-squared (r²) test and the path coefficient estimation test are performed.

RESULTS AND DISCUSSION

An indicator is said to have good validity if it has a loading factor value greater than 0.70.
While the loading factor of 0.50 to 0.60 can still be maintained for models that are still in the development stage (Ghozali, 2014).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Indicator</th>
<th>Outer Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Quality (XI)</td>
<td>KP1</td>
<td>0.822</td>
</tr>
<tr>
<td></td>
<td>KP2</td>
<td>0.841</td>
</tr>
<tr>
<td></td>
<td>KP3</td>
<td>0.775</td>
</tr>
<tr>
<td></td>
<td>KP4</td>
<td>0.753</td>
</tr>
<tr>
<td></td>
<td>KP5</td>
<td>0.729</td>
</tr>
<tr>
<td>Quality of Service (X2)</td>
<td>KL1</td>
<td>0.704</td>
</tr>
<tr>
<td></td>
<td>KL2</td>
<td>0.827</td>
</tr>
<tr>
<td></td>
<td>KL3</td>
<td>0.835</td>
</tr>
<tr>
<td></td>
<td>KL4</td>
<td>0.787</td>
</tr>
<tr>
<td></td>
<td>KL5</td>
<td>0.841</td>
</tr>
<tr>
<td>Price (X3)</td>
<td>HG1</td>
<td>0.863</td>
</tr>
<tr>
<td></td>
<td>HG2</td>
<td>0.852</td>
</tr>
<tr>
<td></td>
<td>HG3</td>
<td>0.803</td>
</tr>
<tr>
<td></td>
<td>HG4</td>
<td>0.883</td>
</tr>
<tr>
<td>Purchase Decision (Z)</td>
<td>KM1</td>
<td>0.851</td>
</tr>
<tr>
<td></td>
<td>KM2</td>
<td>0.752</td>
</tr>
<tr>
<td></td>
<td>KM3</td>
<td>0.866</td>
</tr>
<tr>
<td></td>
<td>KM4</td>
<td>0.763</td>
</tr>
<tr>
<td></td>
<td>KM5</td>
<td>0.784</td>
</tr>
<tr>
<td>Customer Satisfaction (Y)</td>
<td>KK1</td>
<td>0.788</td>
</tr>
<tr>
<td></td>
<td>KK2</td>
<td>0.840</td>
</tr>
<tr>
<td></td>
<td>KK3</td>
<td>0.834</td>
</tr>
<tr>
<td></td>
<td>KK4</td>
<td>0.858</td>
</tr>
<tr>
<td></td>
<td>KK5</td>
<td>0.843</td>
</tr>
</tbody>
</table>

Source: Loading Factor Test Results, 2020

Based on the calculation results, it appears that there is no variable indicator whose outer loading value is below 0.5 so that all indicators are declared eligible or valid for research use and can be used for further analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cronbach Alpha</th>
<th>Composite Reliability</th>
<th>Cronbach Alpha</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Quality (X1)</td>
<td>0.845</td>
<td>0.889</td>
<td>0.845</td>
<td>0.617</td>
</tr>
<tr>
<td>Quality of Service (X2)</td>
<td>0.860</td>
<td>0.899</td>
<td>0.860</td>
<td>0.641</td>
</tr>
<tr>
<td>Price (X3)</td>
<td>0.872</td>
<td>0.913</td>
<td>0.872</td>
<td>0.724</td>
</tr>
<tr>
<td>Purchase Decision (Z)</td>
<td>0.863</td>
<td>0.901</td>
<td>0.863</td>
<td>0.647</td>
</tr>
<tr>
<td>Customer Satisfaction (Y)</td>
<td>0.890</td>
<td>0.919</td>
<td>0.890</td>
<td>0.694</td>
</tr>
</tbody>
</table>

Source: Test Results, 2020

Based on the table above, it can be seen that all constructs have Cronbach's Alpha and Composite Reliability values that are greater than 0.70. The same thing is seen in the AVE value, all constructs have AVE values that are greater than 0.50. Thus it can be concluded that all exogenous and endogenous measurement constructs are reliable.
Chaerudin, & Syafarudin

Table 4.
Results of the Path Coefficient Value and the R Square value

| Hypothesis | Parameter | Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T Statistics (|O/STDEV|) | P Values | Result | R Square |
|------------|-----------|---------------------|-----------------|---------------------------|--------------------------|----------|--------|---------|
| H1 | X1 -> Z | 0.237 | 0.242 | 0.096 | 2.469 | 0.014 | Be accepted | 0.735 |
| H2 | X2 -> Z | 0.359 | 0.356 | 0.085 | 4.216 | 0.000 | Be accepted | |
| H3 | X3 -> Z | 0.357 | 0.354 | 0.073 | 4.866 | 0.000 | Be accepted | |
| H4 | X1 -> Y | 0.242 | 0.242 | 0.091 | 2.646 | 0.008 | Be accepted | 0.827 |
| H5 | X2 -> Y | 0.156 | 0.154 | 0.078 | 2.007 | 0.045 | Be accepted | |
| H6 | X3 -> Y | 0.209 | 0.210 | 0.070 | 2.999 | 0.003 | Be accepted | |
| H7 | Z -> Y | 0.397 | 0.399 | 0.097 | 4.086 | 0.000 | Be accepted | |

Source: Test Results, 2020

Based on the data presented in table 3 above, it can be seen that of the five hypotheses proposed in this study, all of them are acceptable because each of the effects shown has a P-Values value <0.05 and t-statistical value that is greater than the critical value. (1.96). Based on the table above, it can also be seen that in substructure 1, the variable Product Quality (X1), Service Quality (X2), and Price (X3) simultaneously contributed to influencing the Purchasing Decision variable (Z) by 0.735 or 73.5%. And from the table, above it can be seen that the variable Product Quality (X1), Service Quality (X2) Price (X3), and Purchase Decision (Z) have a simultaneous effect on the Consumer Satisfaction variable (Y) of 0.827 or 82.7%, while the rest 17.3% is influenced by other variables not observed in this study.

CONCLUSION

Based on the overall statistical calculations on structural model analysis and hypothesis testing, it can be concluded that: Variable product quality (x1), service quality (x2), and price (x3) have a positive and significant effect on purchasing decisions (z) owned medical devices; Variables of product quality (x1), service quality (x2), price (x3), and purchase decisions (z) have a positive and significant effect on consumer satisfaction (y) medical devices. Service quality and price have a greater influence on consumers to do purchasing decisions Product quality, service quality, and price have a greater influence on customer satisfaction if through the intervening variable purchasing decisions. Suggestions to all related parties working in medical device companies, among others, are that medical device companies can: Improve product quality by continuously monitoring the quality of products currently used continuously where the results of this monitoring will be informed to the factory for continuous improvement. Improve the quality of service by increasing the number of technicians available to speed up the process of repairing tools and increasing the response speed and accuracy of machine repair work if the machine is damaged. Evaluating the prices that will be applied in the following year so that the new prices that apply will be more competitive. It is hoped that researchers who will research further in further research are expected to be able to add or develop other variables as a reference for research at the next research stage.
REFERENCES

Chaerudin, & Syafarudin

Chaerudin, & Syafarudin

